Hyperbolic surfaces as singular flat surfaces

Aaron Fenyes (University of Toronto)

UMD geometry-topology seminar, February 2018

Hyperbolic surface

Modeled on hyperbolic plane, with isometries as symmetries. Has uniform negative curvature.

Hyperbolic surface

Modeled on hyperbolic plane, with isometries as symmetries. Has uniform negative curvature.

Hyperbolic surface

Modeled on hyperbolic plane, with isometries as symmetries. Has uniform negative curvature.

> universal cover

Modeled on euclidean plane, with translations and 180° flips as symmetries.

Has curvature concentrated at conical singularities.

euclidean plane

Modeled on euclidean plane, with translations and 180° flips as symmetries.

Has curvature concentrated at conical singularities.

euclidean plane

glue'

Half-translation surface with its geodesic foliation

The foliations of the charts by vertical lines fit together into a foliation of the surface.

Horizontal distance gives a local measure on swaths of leaves.

Hyperbolic surface with a geodesic lamination

The closest thing to a geodesic foliation is a maximal collection of non-intersecting geodesics.

Measure assigns a "thickness" to each swath of leaves.

Hyperbolic surface with a geodesic lamination

The closest thing to a geodesic foliation is a maximal collection of non-intersecting geodesics.

Measure assigns a "thickness" to each swath of leaves.

boundary leaves (countable)

The horocyclic foliation from a geodesic lamination

