Hyperbolic surfaces as singular flat surfaces

Aaron Fenyes (University of Toronto)
UMD geometry-topology seminar, February 2018

Hyperbolic surface

Modeled on hyperbolic plane, with isometries as symmetries. Has uniform negative curvature.

Hyperbolic surface

Modeled on hyperbolic plane, with isometries as symmetries. Has uniform negative curvature.

Hyperbolic surface

Modeled on hyperbolic plane, with isometries as symmetries. Has uniform negative curvature.

hyperbolic plane

Half-translation surface

Modeled on euclidean plane, with translations and 180° flips as symmetries.

Has curvature concentrated at conical singularities.

euclidean plane

Half-translation surface

Modeled on euclidean plane, with translations and 180° flips as symmetries.

Has curvature concentrated at conical singularities.

euclidean plane

Half-translation surface

conical
singularity

Half-translation surface

 with its geodesic foliation The foliations of the charts by vertical lines fit together into a foliation of the surface.Horizontal distance gives a local measure on swaths of leaves.

euclidean plane

Half-translation surface

Hyperbolic surface

 with a geodesic laminationThe closest thing to a geodesic foliation is a maximal collection of non-intersecting geodesics.

Measure assigns a "thickness" to each swath of leaves.

Hyperbolic surface

 with a geodesic laminationThe closest thing to a geodesic foliation is a maximal collection of non-intersecting geodesics.

Measure assigns a "thickness" to each swath of leaves.
boundary leaves (countable)

The horocyclic foliation

 from a geodesic lamination

Twisting
 of collapsed holonomy bundle

